Climate Response of the Equatorial Pacific to Global Warming
نویسندگان
چکیده
The climate response of the equatorial Pacific to increased greenhouse gases is investigated using numerical experiments from 11 climate models participating in the Intergovernmental Panel on Climate Change’s Fourth Assessment Report. Multimodel mean climate responses to CO2 doubling are identified and related to changes in the heat budget of the surface layer. Weaker ocean surface currents driven by a slowing down of the Walker circulation reduce ocean dynamical cooling throughout the equatorial Pacific. The combined anomalous ocean dynamical plus radiative heating from CO2 is balanced by different processes in the western and eastern basins: Cloud cover feedbacks and evaporation balance the heating over the warm pool, while increased cooling by ocean vertical heat transport balances the warming over the cold tongue. This increased cooling by vertical ocean heat transport arises from increased near-surface thermal stratification, despite a reduction in vertical velocity. The stratification response is found to be a permanent feature of the equilibrium climate potentially linked to both thermodynamical and dynamical changes within the equatorial Pacific. Briefly stated, ocean dynamical changes act to reduce (enhance) the net heating in the east (west). This explains why the models simulate enhanced equatorial warming, rather than El Niño–like warming, in response to a weaker Walker circulation. To conclude, the implications for detecting these signals in the modern observational record are discussed.
منابع مشابه
Climate Change over the Equatorial Indo-Pacific in Global Warming*
The response of the equatorial Indian Ocean climate to global warming is investigated using model outputs submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. In all of the analyzed climate models, the SSTs in the western equatorial Indian Ocean warm more than the SSTs in the eastern equatorial Indian Ocean under global warming; the mean SST gradient acros...
متن کاملTropical Pacific Climate and Its Response to Global Warming in the Kiel Climate Model
A new, non-flux-corrected, global climate model is introduced, the Kiel Climate Model (KCM), which will be used to study internal climate variability from interannual to millennial time scales and climate predictability of the first and second kind. The version described here is a coarse-resolution version that will be employed in extended-range integrations of several millennia. KCM’s performa...
متن کاملRole of Climate Feedback in El Niño–Like SST Response to Global Warming
Under global warming from the doubling of CO2, the equatorial Pacific experiences an El Niño–like warming, as simulated by most global climate models. A new climate feedback and response analysis method (CFRAM) is applied to 10 years of hourly output of the slab ocean model (SOM) version of the NCAR Community Climate System Model, version 3.0, (CCSM3-SOM) to determine the processes responsible ...
متن کاملIntensification of the annual cycle in the tropical Pacific due to greenhouse warming
[1] The annual cycle is one of the most important components of the global climate system Yet little attention has been paid to the response of the equatorial annual cycle to anthropogenic climate change. Here we present results from a global climate model with high tropical resolution that simulates a strong intensification of the annual cycle in the tropical Pacific in response to increased g...
متن کاملResponse of the Indian Ocean Basin Mode and Its Capacitor Effect to Global Warming*
The development of the Indian Ocean basin (IOB) mode and its change under global warming are investigated using a pair of integrations with the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (CM2.1). In the simulation under constant climate forcing, the El Niño–induced warming over the tropical Indian Ocean (TIO) and its capacitor effect on summer northwest Pacific climate are ...
متن کامل